ANSI/ASHRAE/IES Addenda bi and bt to ANSI/ASHRAE/IESNA Standard 90.1-2007

Energy Standard for Buildings Except Low-Rise Residential Buildings

Approved by the ASHRAE Standards Committee on June 26, 2010; by the ASHRAE Board of Directors on June 30, 2010; by the IES Board of Directors on June 23, 2010; and by the American National Standards Institute on July 1, 2010.

These addenda were approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards.

The latest edition of an ASHRAE Standard may be purchased on the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org

ASHRAE STANDING STANDARD PROJECT COMMITTEE 90.1 Cognizant TC: TC 7.6, Systems Energy Utilization SPLS Liaison: Doug Reindl · ASHRAE Staff Liaison: Steven C. Ferguson · IESNA Liaison: Rita M. Harrold

Mr Michael CA Schwedler* Mr Mark M Hydeman* **Co-Vice Chair** Mr Stephen V Skalko, PE* Ms Susan Isenhour Anderson* Mr Wagdy A Y Anis, FAIA* Mr Peter A Baselici* Mr Jeffrey G Boldt* Mr David J Branson* Mr Keith I Emerson* Mr Drake H Erbe* Mr James A Garrigus* Mr Jason John Glazer* Mr Pekka Hakkarainen* Mr Richard Heinisch* Mr Ned B Heminaer* Mr John F Hogan, AIA, PE* Mr Hyman M Kaplan* Mr Michael D Lane, LC* Mr Richard Lord* Mr Ronald Majette* Dr Itzhak H Maor, PHD* Mr James Patrick McClendon* Mr Michael W Mehl* Mr Harry P Misuriello* Mr Frank T Morrison* Mr Timothy M Peglow* Mr Eric E Richman* Mr Leonard C Sciarra* Dr Maria Spinu* Mr Christian R Taber* Mr Michael Tillou* Ms Martha G VanGeem, PE* Mr Michael Waite* Mr Mchenry Wallace, Jr* Mr Richard D Watson* Mr Jerry W White, Jr* Mr Ron Burton* Mr Charles C Cottrell* Mr S Craig Drumheller* Mr Allan B. Fraser* Mr Ronald D Kurtz* Mr Steven Rosenstock, PE* Mr Frank A Stanonik* Mr Ernest A Conrad Mr Chad Groshart Dr Merle F McBride Mr Kenneth Sagan Mr Randall Blanchette Mr Donald M Brundage, PE Mr Brian David Hahnlen Ms Susanna S Hanson Mr Jonathan Humble Mr Raymond Frank McGowan Mr Michael I Rosenberg Ms Martha (Marty) Gail Salzberg Mr Jeffrey R Stein Mr Wayne Stoppelmoor Mr William J Talbert Mr Daniel J Walker, PE

Co-Vice Chair Member Organizational Organizational Organizational Organizational Organizational Organizational Organizational Alternate Org Alternate Org Alternate Org Alternate Org Subcommittee Subcommittee

Chair

*Denotes members of voting status when the document was approved for publication.

ASHRAE STANDARDS COMMITTEE 2009–2010

Steven T. Bushby, *Chair* H. Michael Newman, *Vice-Chair* Douglass S. Abramson Robert G. Baker Michael F. Beda Hoy R. Bohanon, Jr. Kenneth W. Cooper K. William Dean Martin Dieryckx Allan B. Fraser Nadar R. Jayaraman Byron W. Jones Jay A. Kohler Carol E. Marriott Merle F. McBride Frank Myers Janice C. Peterson Douglas T. Reindl Lawrence J. Schoen Boggarm S. Setty Bodh R. Subherwal James R. Tauby James K. Vallort William F. Walter Michael W. Woodford Craig P. Wray Wayne R. Reedy, *BOD ExO* Thomas E. Watson, *CO*

Stephanie Reiniche, Manager of Standards

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). *Consensus* is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

The requirements for pipe insulation contained in the ASHRAE 90.1-2007 standard are unchanged from the 90.1-1999 version of the standard. The 1999 requirements were developed, in large part, based on the work of the Pacific Northwest National Laboratories (Somasundaram and Winiarski) in 1995. Since that time, significant changes in the installed costs of pipe insulation have occurred. Also, the 90.1 SPPC has adopted new economic criteria to be used in developing standard requirements. The proposed changes incorporate these updated criteria and cost data.

The approach used in developing these proposed requirements parallels the PNNL work with the exception that the requirements have been expanded to include higher usage systems. Requirements are presented for low use (<4,400 hrs/yr) and high use (? 4,400 hrs/yr) systems. In addition, footnotes have been added to address constrained locations and to clarify the requirements for direct-buried piping.

Note: In this addendum, changes to the current standard are indicated in the text by <u>underlining</u> (for additions) and strikethrough (for deletions) unless the instructions specifi-

Addendum bi to 90.1-2007

Revise the Standard as follows (I-P):

6.4.4.1.3 Piping Insulation. Piping shall be thermally insulated in accordance with Table<u>s</u> 6.8.3<u>A and 6.8.3B.</u>

Exceptions:

- a. Factory-installed piping within HVAC equipment tested and rated in accordance with 6.4.1.
- b. Piping that conveys fluids having a design operating temperature range between 60°F and 105°F, inclusive.
- c. Piping that conveys fluids that have not been heated or cooled through the use of <u>nonrenewable energy</u> <u>fossil fuels or electricity (such as roof and condensate drains, domestic cold water supply, natural gas</u> piping) or refrigerant liquid piping) or
- d. <u>Where heat gain or heat loss will not increase energy</u> <u>usage (such as liquid refrigerant piping)</u>.
- e. In piping 1 in. or less, insulation is not required for strainers, control valves, and balancing valves.
- d. Hot water piping between the shutoff valve and the coil, not exceeding 4 ft in length, when located in *conditioned spaces*.
- e. Pipe unions in heating systems (steam, steam condensate, and hot water).

Delete existing Table 6.8.3 in its entirety and replace with Tables 6.8.3A and 6.8.3B

Fluid Design Operat- ⁻ ing Temp. Range (°F)	Insulation C	onductivity-		Nominal Pipe or Tube Size (in.)					
	Conductivity Btu-in./(h-ft2-°F)	Mean Rating Temp. °F	4	1 to <1-1/2-	1-1/2 to <4-	4 to <8	≥ 8		
	Heating S	ystems (Steam, Stea	am Conde	nsate, and Hot Wa	ater) b,c				
>350-	0.32-0.34	250-	2.5	3.0	3.0-	4.0-	4.0		
251-350-	0.29-0.32	200-	1.5	2.5	3.0-	3.0	3.0		
201-250-	0.27-0.30	150-	1.5	1.5	2.0	2.0	2.0		
141-200-	0.25-0.29	125	1.0-	1.0	1.0-	1.5	1.5		
105-140-	0.22-0.28	100-	0.5-	0.5	1.0-	1.0-	1.0		
		Domestic and Serv	vice Hot N	ater Systems					
105+-	0.22-0.28	100-	0.5 -	0.5-	1.0-	1.0	1.0		
	Coolin	g Systems (Chilled '	Water, Bri	ne, and Refrigera	nt) d-				
40-60-	0.22-0.28-	100-	0.5-	0.5-	1.0	1.0-	1.0		
<40-	0.22-0.28-	100-	0.5	1.0	1.0-	1.0	1.5		

TABLE 6.8.3 Minimum Pipe Insulation Thicknesses^a

a For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows: T = r{(1 + t/r)K/k - 1} where T = minimum insulation thickness (in.), r = actual outside radius of pipe (in.), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (Btu-in.[h·ft².°F]); and k= the upper value of the conductivity range listed in this table for the applicable fluid temperature.

b These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature.

e Piping insulation is not required between the control valve and coil on run-outs when the control valve is located within 4 ft of the coil and the pipe size is 1 in. or less.

d These thicknesses are based on energy efficiency considerations only. Issues such as water vapor permeability or surface condensation sometimes require vapor retarders or additional insulation.

TABLE 6.8.3A Minimum Pipe Insulation Thickness Heating and Hot Water Systems A.b.c.d (Steam, Steam Condensate, Hot Water Heating and Domestic Water Systems)

Fluid Operating	Insulation C	<u>Conductivity</u>					
<u>Temperature Range (°F)</u> <u>and Usage</u>	<u>Conductivity</u> <u>Btu·in./(h·ft²·°F)</u>	<u>Mean Rating</u> <u>Temperature, °F</u>	<u><1</u>	<u>1 to</u> <1-1/2	<u>1-1/2 to <4</u>	<u>4 to <8</u>	<u>≥8</u>
				Insulati	on Thicknes	<u>s (in)</u>	
<u>>350 °F</u>	<u>0.32 - 0.34</u>	<u>250</u>	<u>4.5</u>	<u>5.0</u>	<u>5.0</u>	<u>5.0</u>	<u>5.0</u>
<u>251 - 350°F</u>	<u>0.29 - 0.32</u>	<u>200</u>	<u>3.0</u>	<u>4.0</u>	<u>4.5</u>	<u>4.5</u>	<u>4.5</u>
<u>201 - 250°F</u>	<u>0.27 - 0.30</u>	<u>150</u>	<u>2.5</u>	<u>2.5</u>	<u>2.5</u>	<u>3.0</u>	<u>3.0</u>
<u>141 - 200°F</u>	<u>0.25 - 0.29</u>	<u>125</u>	<u>1.5</u>	<u>1.5</u>	2.0	<u>2.0</u>	<u>2.0</u>
<u>105 - 140°F</u>	<u>0.22 - 0.28</u>	<u>100</u>	<u>1.0</u>	<u>1.0</u>	<u>1.5</u>	<u>1.5</u>	<u>1.5</u>

a For insulation outside the stated conductivity range, the minimum thickness (*T*) shall be determined as follows: T = r{(1 + t/t)^{K/k} - 1} where T = minimum insulation thickness (in.), r = actual outside radius of pipe (in.), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (Btu·in./h·ft2·°F); and k = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature.

c For piping smaller than 1¹/₂" and located in partitions within *conditioned spaces*, reduction of these thicknesses by 1" shall be permitted (before thickness adjustment required in footnote a) but not to thicknesses below 1".

d For direct-buried heating and hot water system piping, reduction of these thicknesses by 1.5" shall be permitted (before thickness adjustment required in footnote a) but not to thicknesses below 1".

TABLE 6.8.3B Minimum Pipe Insulation Thickness Cooling Systems (Chilled Water, Brine, and Refrigerant)^{a,b,c}

Fluid Operating <u>Temperature</u> Range (°F) and Usage	Insulation C	<u>Conductivity</u>	<u>Nominal Pipe or Tube Size (in.)</u>				
	$\frac{\text{Conductivity}}{(1 \text{ s}^2 \text{ or })}$	<u>Mean Rating</u> <u>Temperature, °F</u> —	<u><1</u>	<u>1 to</u> <1-1/2	<u>1-1/2 to</u> <u><4</u>	<u>4 to <8</u>	<u>≥8</u>
	<u>Btu·in./(h·ft²·°F)</u>		Insulation Thickness (in)				
<u>40 - 60°F</u>	<u>0.21 - 0.27</u>	75	<u>0.5</u>	<u>0.5</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>
<u><40°F</u>	<u>0.20 - 0.26</u>	<u>50</u>	<u>0.5</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>	<u>1.5</u>

a For insulation outside the stated conductivity range, the minimum thickness (*T*) shall be determined as follows: $T = r\{(1 + t/t)K^k - 1\}$ where T = minimum insulation thickness (*i*), r = actual outside radius of pipe (in.), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, <math>K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (Btu·in./h·ft2.°F); and k = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

b These thicknesses are based on energy efficiency considerations only. Issues such as water vapor permeability or surface condensation sometimes require vapor retarders or additional insulation.

c For direct-buried cooling system piping, insulation is not required.

b

Revise the Standard as follows (SI):

6.4.4.1.3 Piping Insulation. Piping shall be thermally insulated in accordance with Tables 6.8.3<u>A and 6.8.3B.</u>

Exceptions:

- a. Factory-installed piping within HVAC equipment tested and rated in accordance with 6.4.1.
- Piping that conveys fluids having a design operating temperature range between 16°C and 41°C, inclusive.
- Piping that conveys fluids that have not been heated or cooled through the use of nonrenewable energyfossil fuels or electricity (such as roof and conden-

sate drains, domestic cold water supply, natural gas piping), or refrigerant liquid piping) or

- d. Where heat gain or heat loss will not increase energy usage (such as liquid refrigerant piping).
- e. In piping 25 mm or less, insulation is not required for strainers, control valves, or balancing valves.
- d. Hot water piping between the shutoff valve and the coil, not exceeding 4 ft in length, when located in conditioned spaces.
- e. Pipe unions in heating systems (steam, steam condensate, and hot water).

(Delete existing Table 6.8.3 in its entirety and replace with Tables 6.8.3A and 6.8.3B)

Fluid Design	Insulation (Conductivity		Nominal Pipe or Tube Size (mm)				
Operating Temp. Range (°C)	Conductivity (W/m·K)	Mean Rating Temp. °C	< <u>25</u>	25 to <40	4 0 to <100	100 to <200	<u>≥200</u>	
	Heating	Systems (Steam, Stee	am Conden	sate, and Hot Wat	er)^{†,**}			
>177	0.046 0.049	121	6.4	7.6	7.6	10.2	10.2	
122 177	0.042 0.046	93	3.8	6.4	7.6	7.6	7.6	
94–121	0.039 0.043	66	3.8	3.8	5.1	5.1	5.1	
61-93	0.036 0.042	52	2.5	2.5	2.5	3.8	3.8	
41-60	0.032 0.040	38	1.3	1.3	2.5	2.5	2.5	
		Domestic and Ser	vice Hot-W	ater Systems				
41+	0.032 0.040	38	1.3	1.3	2.5	2.5	2.5	
	Cool	ing Systems (Chilled)	Water, Brin	e, and Refrigerant) ^{††}			
4-16	0.032 0.040	38	1.3	1.3	2.5	2.5	2.5	
-4	0.032 0.040	38	1.3	2.5	2.5	2.5	3.8	

TABLE 6.8.3 Minimum Pipe Insulation Thickness*

*For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows:

 $T = r\{(1 + t/r)^{K/k} - 1\}$

where T = minimum insulation thickness (cm), r = actual outside radius of pipe (cm), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, <math>K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (W/m-K); and k = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

+These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature.

**Piping insulation is not required between the control valve and coil on run-outs when the control valve is located within 1.2 m of the coil and the pipe size is 25 mm or less.

++These thicknesses are based on energy efficiency considerations only. Issues such as water vapor permeability or surface condensation sometimes require vapor retarders or additional insulation.

e- The table is based on steel pipe. Non-metallic pipes schedule 80 thickness or less shall use the table values. For other non-metallic pipes having thermal resistance greater than that of steel pipe, reduced insulation thicknesses are permitted if documentation is provided showing that the pipe with the proposed insulation has no more heat transfer per foot than a steel pipe of the same size with the insulation thickness shown in the table.

TABLE 6.8.3A Minimum Pipe Insulation Thickness Heating and Hot Water Systems a.b.c.d (Steam, Steam Condensate, Hot Water Heating and Domestic Water Systems)

_	Insulation	<u>Conductivity</u>	<u>Nominal Pipe or Tube Size (mm)</u>				
<u>Fluid Operating</u> <u>Temperature Range (°C)</u> <u>and Usage</u>	<u>Conductivity</u>	Mean Rating	<u><25</u>	<u>25 to <40</u>	<u>40 to</u> <100	<u>100 to</u> <200	<u>≥200</u>
	<u>W/(m°C)</u>	<u>Temperature, °C</u>	Insulation Thickness (mm)				
> <u>177 °C</u>	0.046 - 0.049	<u>121</u>	<u>115</u>	<u>125</u>	<u>125</u>	<u>125</u>	<u>125</u>
<u>122 - 177°C</u>	<u>0.042 - 0.046</u>	<u>93</u>	<u>80</u>	<u>100</u>	<u>115</u>	<u>115</u>	<u>115</u>
<u>94 -121°C</u>	0.039 - 0.043	<u>66</u>	<u>65</u>	<u>65</u>	<u>80</u>	<u>80</u>	<u>80</u>
<u>61 - 93°C</u>	0.036 - 0.042	<u>52</u>	<u>40</u>	<u>40</u>	<u>50</u>	<u>50</u>	<u>50</u>
<u>41 - 60°C</u>	0.032 - 0.040	<u>38</u>	<u>25</u>	<u>25</u>	<u>40</u>	<u>40</u>	<u>40</u>

a For insulation outside the stated conductivity range, the minimum thickness (*T*) shall be determined as follows: T = r{(1 + t/r)^{K/k} - 1} where T = minimum insulation thickness (mm), r = actual outside radius of pipe (mm), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (W/(m°C)); and k = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature.

c For piping smaller than 40mm and located in partitions within conditioned spaces, reduction of these thicknesses by 25mm shall be permitted (before thickness adjustment required in footnote a) but not to thicknesses below 25 mm.

d For direct-buried heating and hot water system piping, reduction of these thicknesses by 40mm shall be permitted (before thickness adjustment required in footnote a) but not to thickness below 25 mm.

TABLE 6.8.3B Minimum Pipe Insulation Thickness Cooling Systems (Chilled Water, Brine, and Refrigerant)^{a,b,c}

Fluid Operating	Insulation	<u>Conductivity</u>	<u>Nominal Pipe or Tube Size (mm)</u>				
<u>Temperature Range (°C)</u> <u>and Usage</u>	<u>Conductivity</u> <u>W/(m°C)</u>	<u>Mean Rating</u> <u>Temperature, °C</u>	<u><25</u>	<u>25 to <40</u>	<u>40 to</u> <100	<u>100 to</u> <200	<u>≥200</u>
			Insulation Thickness (mm)				
4 - 16°C	0.030 - 0.039	24	<u>15</u>	<u>15</u>	<u>25</u>	<u>25</u>	<u>25</u>

a. For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows: T = r{(1 + t/r)^{K/k} - 1} where T = minimum insulation thickness (mm), r = actual outside radius of pipe (mm.), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (W/(m°C)); and k = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

<u>b.</u> These thicknesses are based on energy efficiency considerations only. Issues such as water vapor permeability or surface condensation sometimes require vapor retarders or additional insulation.

c. For direct-buried cooling system piping, insulation is not required.

b

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Centrifugal chillers that are not optimized to operate at standard test conditions as defined by AHRI Standard 550/590 may include design changes that hinder their ability to meet efficiency targets at standard test conditions. In the 2007 version, Tables 6.8.1H-J provided tabulated values for the modified efficiency targets for these chillers. Addendum M removed these tables and left the performance adjustment equation modified for the new units of kW/ton in the I-P version. At the time that Addendum M was being considered, it was noted that the performance adjustment equation (the k_{adj} factor) limited the scope of the Standard by limiting the range of combinations of temperatures and flow conditions. The AHRI chiller section thereafter reformulated the adjustment equations so that more chillers can be brought under the scope of the Standard, while improving the accuracy of the adjustment and increasing the stringency of the required efficiencies. Chillers further away from standard conditions will be required to have efficiency improvement, while chillers close to standard conditions will see little change in requirements. The definition of LIFT in the adjustment equation has been changed for consistency with industry convention (leaving condenser minus leaving evaporator temperature).

In addition, labeling requirements have been further defined, to make it simpler for determining compliance.

Based on shipped centrifugal chiller performance predictions, there is an expected efficiency improvement range of 0 to 23%, with an average of 1% improvement, depending on the performance conditions specified. Part load performance is also improved by the same new adjustment factor. It is anticipated that 10 percent more centrifugal chillers will be covered by this Standard versus Addendum M to 2007 and 52 percent more than were covered by the 2004 and 2007 versions. This proposal brings approximately 98% of the centrifugal chillers under the scope of the Standard.

As Addendum M claimed no scope improvement savings, this proposed addendum is estimated to save over 24 GWh annually worldwide. U.S. savings are an estimated 12 GWh per year, based on the average of the last 10 years of chiller shipments.

Note: In this addendum, changes to the current standard are indicated in the text by <u>underlining</u> (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum bt to 90.1-2007

Revise the standard as follows (I-P Units)

6.4.1.2 Minimum Equipment Efficiencies—Listed Equipment—Nonstandard Conditions.

- Adjusted maximum full-load kW/ton rating
 - = (full-load kW/ton from Table 6.8.1C)/ K_{adi}
 - Adjusted maximum NPLV rating
 - = (IPLV from Table 6.8.1C)/ K_{adi}

where

 $\frac{K_{adj}}{0.000045780(X)^{2}} = \frac{6.174722}{0.000045780(X)^{2}} + \frac{0.00629466(X)^{2}}{0.000045780(X)^{3}}$

$$X = DTstd + LIFT$$

- DTstd = $(24 + (full load kW/ton from Table 6.8.1C) \times \frac{6.83}{Flow}$
- Flow = Condenser water <u>fluid</u> flow (gpm)/Cooling fullload capacity (tons)
- LIFT = CEWT CLWT

CEWT- = Full-load condenser entering water temperature (°F)

LEWT = Full load leaving chilled water temperature ($^{\circ}F$)

$$\underline{K}_{adj} = A * B$$

$$\underline{A} = \underline{0.00000014592 * (LIFT)^4 - 0.0000346496 *} \\ (\underline{LIFT})^3 + \underline{0.00314196 * (LIFT)^2 - 0.147199 *} \\ (\underline{LIFT}) + 3.9302$$

<u>LIFT</u> = LvgCond - LvgEvap

$$LvgCond = Full-load condenser leaving water temperature(°F)$$

LvgEvap = Full-load leaving evaporator temperature (°F)

<u>B</u> = 0.0015 * LvgEvap + 0.934

The table adjusted full-load and NPLV values are only applicable over the following full-load design ranges:

- Minimum Leaving Chiller Water Evaporator Temperature: <u>36°F-36°F</u>
- Maximum <u>Leaving</u> Condenser <u>Entering</u> Condenser Water Temperature: 102°F 115°F
- Condenser Water Temperature Flow: 1 to 6 gpm/ton
- $X \ge 39^{\circ}F$ and $\le 60^{\circ}F$
- LIFT $\ge 20^{\circ}$ F and $\le 80^{\circ}$ F

Manufacturers shall calculate the adjusted maximum kW/ton and NPLV before determining whether to label the chiller per 6.4.1.5. Compliance with 90.1-2007 or - 2010 or both shall be labeled on chillers within the scope of the Standard.

Example: Path A 600 ton centrifugal chiller Table 6.8.1C efficiencies as of 1/1/2010 Full Load = 0.570 kW/ton IPLV = 0.539 kW/ton $CEWT = 80^{\circ}F$ Flow = 2.5 gpm/ton LIFT = 80 42 = 38^{\circ}F $CLWT = 42^{\circ}F$ DT = (24 + 0.570 × 6.83)/2.5 = 11.16^{\circ}F $X = 38 + 11.16 = 49.16^{\circ}F$

 $\begin{array}{rl} K_{adj} &= & 6.174772 & 0.303668(49.16) & + \\ 0.00629466(49.16)^2 & - & 0.00004578(49.16)^3 & = & 1.020 \\ LvgCond &= & 91.16^{\circ}F \\ LvgEvap &= & 42^{\circ}F \\ LIFT &= & 91.16 & - & 42 & = & 49.16^{\circ}F \\ K_{adj} &= & A & B \\ A &= & 0.00000014592 & x & (49.16)^4 & - & 0.0000346496 & x \\ (49.16)^3 &+ & 0.00314196 & x & (49.16)^2 & - & 0.147199 & x & (49.16) \\ &+ & 3.930 &= & 1.023 \\ B &= & 0.0015 & x & 42 & + & 0.934 & = & 0.997 \\ Adjusted full load &= & 0.570/(1.023 & x & 0.997) &= & 0.559 & kW/ \\ ton \\ NPLV &= & 0.539/(1.023 & x & 0.997) &= & 0.528 & kW/ton \\ \end{array}$

Revise footnote a to Table 6.8.1C as follows:

a. The <u>centrifugal</u> chiller equipment requirements <u>after</u> <u>adjustment per 6.4.1.2</u> do not apply forto chillers used in <u>low temperature applications</u> where the design leaving water <u>evaporator</u> temperature is $< 40 \ 36^{\circ}F$

Revise the Standard as follows (SI units)

6.4.1.2 Minimum Equipment Efficiencies—Listed Equipment—Nonstandard Conditions.

Adjusted minimum full-load COP rating

- = (full-load COP from Table 6.8.1C) \times K_{adi}
- Adjusted maximum minimum NPLV rating
- = (IPLV from Table 6.8.1C) \times K_{adi}

where

$$\frac{K_{adj}}{0.000266989(X)3} = \frac{-6.174722 - 0.5466024(X) + 0.020394698(X)2}{0.000266989(X)3}$$

X = DTstd + LIFT

- $\frac{\text{DTstd}}{\text{6.8.1C}} = \frac{(0.267114 + 0.267088/(\text{Full load COP from Table})}{(\text{Form Table})}$
- Flow = Condenser water <u>fluid</u> flow (L/s)/Cooling full load capacity (kW)
- $\frac{\text{LIFT}}{\text{CLWT}} = \frac{\text{CLWT}}{\text{CLWT}}$
- CEWT = Full load condenser entering water temperature (°C)
- CLWT = Full load leaving chilled water temperature (°C)

$\underline{\mathbf{K}}_{\underline{\mathbf{adj}}} = \mathbf{A} * \mathbf{B}$

where

- <u>A</u> = $0.0000015318 \text{ x} (\text{LIFT})^4 0.000202076 \text{ x} (\text{LIFT})^3$ +
- <u>0.0101800 x (LIFT)² 0.264958 x LIFT + 3.930196</u>
- <u>B</u> = 0.0027 x LvgEvap (Deg C) + 0.982

 $\underline{LIFT} = \underline{LvgCond} - \underline{LvgEvap}$

- LvgCond = Full-load condenser leaving water temperature (°C)
- LvgEvap = Full-load leaving evaporator temperature (°C)

The adjusted full-load and NPLV values are only applicable <u>for centrifugal chillers meeting all of</u> over the following full-load design ranges:

- Minimum Leaving Chiller Water Evaporator Temperature: 2.2°C
- Maximum <u>Leaving</u> Condenser <u>Entering</u> Condenser Water Temperature: 46.1°C
- Condenser Water Flow: 0.036 to 0.0721 L/s·kW
- $X \ge 21.7^{\circ}C \text{ and } \le 33.3^{\circ}C$
- <u>LIFT \geq 11.1°C and \leq 44.4°C</u>

Manufacturers shall calculate the adjusted minimum COP and NPLV before determining whether to label the chiller per 6.4.1.5. Compliance with 90.1-2007 or -2010 or both shall be labeled on chillers within the scope of the Standard.

Example: Path A 2110 kW centrifugal chiller Table 6.8.1C efficiencies as of 1/1/2010 Full Load = 6.170 COP $\frac{1PLV = 6.525 \text{ COP}}{1}$ $CEWT = 26^{\circ}C$ $Flow = 0.05 L/s \cdot kW$ $CLWT = 5.5^{\circ}C$ $LIFT = 26 - 5.5 = 20.50^{\circ}C$ $DT = (0.267114 + 0.267088/6.170)/0.05 = 6.208^{\circ}C$ $X = 21.11 + 6.208 = 27.319^{\circ}F$ 6.174722 0.5466024(27.319) K_{adi} $0.020394698(27.319)^2 - 0.000266989(27.319)^3 = 1.031$ Adjusted full load = $6.170 \times 1.031 = 6.359$ COP NPLV =6.525 × 1.031 = 6.725 COP

Example: Path A 2110 kW centrifugal chiller Table 6.8.1C efficiencies as of 1/1/2010

Full Load = 6.170 COP IPLV = 6.525 COP $LvgCond = 26^{\circ}C$ $LvgEvap = 5.5^{\circ}C$

```
LIFT = 26 - 5.5 = 20.50^{\circ}C
LIFT = 32.2 - 5.5 = 26.7
              6.174722
        =
                                  0.5466024(26.708)
Kadi
0.020394698(26.708)^{2}
                               \frac{0.000266989(26.708)^3}{2}
1.03747 A x B
<u>A = 0.0000015318 x (26.7)<sup>4</sup> - 0.0</u>00202076 x
(26.7)^{3} +
   0.0101800 \ge (26.7)^2 - 0.264958 \ge 26.7 + 3.930196 =
1.045
\mathbf{B} = 0.0027 * 5.5 + 0.982 = 0.996
Adjusted full load COP = 6.170 \times 1.045 \times 0.996 = 6.423
COP
Adjusted NPLV = 6.525 x 6.473 x 1.045 x 0.996 = 6.792
COP
```

Revise footnote a to Table 6.8.1C as follows:

a. The <u>centrifugal</u> chiller equipment requirements <u>after</u> <u>adjustment per 6.4.1.2</u> do not apply forto chillers used in <u>low temperature applications</u> where the design leaving fluid temperature is $< 4.4 \ 2.2^{\circ}$ C.

Revise Section 12 as follows

American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1791 Tullie Circle, NE, Atlanta, GA 30329

ANSI/ASHRAE/IESNA Standard 90.1-2007

Energy Standard for Buildings Except Low-Rise Residential Buildings

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.